Krill oil fatty acids tend to be diacylglycerides (two fatty acids bound to a glycerol molecule) rather than triglycerides, and due to binding to a phosphatidic acid group at the final binding site the structure is a phospholipid in nature.[7]
Fish oil supplementation tends to be triglycerides while Lovaza (brand name) are ethyl esters.
Structurally, the fatty acids are bound in phospholipid form. While they confer the same benefits as the fatty acids, there are some differences in the absorption kinetics and the phospholipid itself may also be bioactive
The fatty acid breakdown of krill oil appears to be 26.1-30.7% saturated fatty acids, 24.2-25.9% monounsaturated fatty acids, and 34.1-48.5% omega-3 polyunsaturated fatty acids; the final 2.5% consists of omega-6 fatty acids.[8][1] The individual fatty acid breakdown of krill oil (not considering the structural form) is:
- Eicosapentaenoic acid (EPA; 20:5 n3) at 19% (fish oil at 27%)[8]
- Docosahexaenoic acid (DHA; 22:6 n3) at 10.9% (fish oil at 24%)[8]
- Myristic acid (14:0) at 7.2% (fish oil at 3.2%)[8]
- Palmitic acid (16:0) at 21.8% (fish oil at 7.8%)[8]
- Stearic acid (18:0) at 1.3% (fish oil at 2.6%)[8]
- Arachidonic acid (20:0) at less than 0.1% (fish oil at 0.6%)[8]
- Behenic acid (22:0) at 0.2% (fish oil at 0.4%)[8]
- 16:1 n7 at 5.4% (fish oil 3.9%)[8]
- 18:1, with n5,7, and 9 collectively 18.3% (fish oil 6.1%)[8]
- 18:3 n3 at 1.0% (fish oil at 0.5%)[8]
- 18:4 n3 at 1.6% (fish oil at 1.9%)[8]
Krill oil is high in the two fatty acids commonly said to underlie the benefits of fish oil, although on a per weight basis they appear to be a tad lower than fish oil due to a higher percentage of saturated fats in krill oil; krill oil is low in omega-6 fatty acids and has a respectable monounsaturated fat content which is fairly balanced with the omega-3 and saturated content
Of these fatty acids, between 28-58% are bound as phospholipids[5][6] and appear to be mostly phosphatidylcholine (48[5] to 80%[9] of various combinations[10][11]), with some phosphatidylethanolamine (1.5-8%[12][5]) and phosphatidylglycerol (1%[5]); some studies reported a high (21-24%) unidentifiable component[5] which is possibly phosphatidylserine but not confirmed to be so. The overall phosphatidylcholine content has been calculated once to be 34+/-5g per 100g oil.[10] Phosphatidylinositol appears to be negligible.[12]
Some diglycerides are further bound to cholesterol (0.79-4.65% total lipids)[6] and krill oil has been confirmed to not be a source of sphingomyelin like calf brain is.[13][12]
Approximately a bit more than half of the fatty acids are bound in the form of phospholipids, with phosphatidylcholine being the most prominent one. Other phospholipids and variants of mono/diacylglycerol molecules are also present, but likely to play minor roles
Other components of krill oil that may also confer bioactivity include:
- 66.1mg of cholesterol has been detected per 100g krill, which is about a third of shrimp but similar to other fish products.[1] Other estimates suggest a range of 17-76.3mg/g in the oil 62.1-72.6mg/100g in the krill itself.[1]
- Astaxanthin content has been reported[14][15] which is half the 3R,3'R configuration[16][15] and may be esterified (up to 95% of astaxanthin.[16]) Total carotenoids reach 878-1016mcg/g of the oil[17][18] and both β-carotene and vitamin A are negligible (latter at 91mcg/g, former undetectable[17])
- Vitamin E[19]
- A novel flavonoid, reported to be similar to 6,8-di-c-glucosylluteolin (secondhand reports)[19][14]
There appear to be a phenolic and cholesterol content in krill oil as well, with the astaxanthin content of the oil likely being too low to matter as a supplement itself (ie. the benefits on the astaxanthin page may not apply to orally ingested krill oil)
Fluoride contamination is thought to be an issue with krill oil supplementation as the exoskeletal of krill is very high in naturally occurring fluoride (350mg/100g) and while the tissue is low, upon death fluoride may migrate from the exoskeleton into the meat (up to 9mg/100g has been reported) if the shell is not immediately removed.[1][20][21] This fluoride is well absorbed by mammals,[22] but isn't thought to be a concern with immediate removal of the exoskeleton as over 99% of fluoride is localized there.[20] It is uncertain how or if this is a concern to krill oil supplementation.
There is likely to be low risk of mercury in krill oil sourced EPA and DHA, mainly due to positive correlations between fish size and predatory status with mercury content (putting fish such as shark, albacore tuna, and swordfish high in mercury concentrations with prawn, herring, and small fish lower); however, this does not appear to be directly assessed.
There is a logical basis for worry about fluoride contamination, but the exact level of concern towards krill oil supplements is not known. This concern can be heavily alleviated by proper processing and handling practises of krill