Trehalose (synonyms ofmycose and tremalose) is a disaccharide (two sugar) comprised of two glucose molecules, named after its sources of trehala manna (from which 'Trehalose' was named from[1]) which is a sugary solution obtained from the nest and/or cocoon of some insects (larinus genera).[2] "Mycose" as a synonym was named after another common source of trehalose, mushrooms.
Trehalose's main biological purpose in mushrooms and bacteria is water regulation, since it seems to form a gel phase during cellular dehydration protecting organelle during this time and then allows rapid rehydration when a proper environment is reintroduced.[3][4] It can serve a hydration function in humans as well as possessing general antioxidant properties, but its major role is as a cellular chaperone regulating intracellular functions such as protein folding and unfolding; it is one of few exogenous chaperones that can be consumed orally similar to the bile acid and chaperone TUDCA.[5]
Trehalose is a dietary sugar found predominately in mushrooms that also appears to have a role in autophagy and protein folding, leading to pharmacological actions atypical of carbohydrates
The structure for trehalose (α-D-glucopyranosyl-(1→1)-α-D-glucopyranoside) differs from the other disaccharide made from two glucose molecules known as maltose (4-O-α-D-Glucopyranosyl-D-glucose) as trehalose has a different bond between the two molecules (a 1,1-glucoside bond rather than an alpha linkage) and trehalose is made of two α-glucose molecules; α-glucose (and β-glucose) referring to the isomerization of the hydroxyl group on carbon 1 in the D-glucose molecule.
Trehalose differs slightly from maltose despite both containing two glucose monosaccharides, as trehalose possesses a different bond and is exclusively comprised of alpha-glucose molecules