Absorption of triglycerides from the intestines can be hindered with ingestion of the leaf extract of Crataegus pinnatifida, with 125-500mg/kg oral intake being given 30 minutes prior to an olive oil loading test reducing circulating lipid levels over the next 6 hours by 38-59% (125mg/kg), 62-87% (250mg/kg) and 95% at 2 hours relative to control (500mg/kg; 6 hour time point lower than control); when compared to Orlistat (12.5mg/kg) which reduced lipids by 81-89%, the highest dose of Crataegus outperformed Orlistat.[14] This is possibly related to inhibition of pancreatic lipase (required for absorption of triglycerides in the diet), and an IC50 value of 324.0mcg/mL has been reported.[24]
Cholesterol absorption may also be inhibited, being weakly synergistic with plant sterols.[19]
The leaves may inhibit lipid absorption; actually appears to be very effective in doing so at high doses with more potency than Orlistat (but requiring a much higher oral dose)
In male mice who were given a high fat diet to induce high blood triglycerides and cholesterol, administration of 250mg/kg of the fruits of Crataegus pinnatifida for 7 days was able to improve the activity of PPARα and downstream proteins in the liver (but not adipose) of rats and thought to be a mechanism of hypolipidemic effects by increasing β-oxidation,[25] with another study managing to abolish the hypolipidemic effects by coadministration with a PPARα antagonist (MK886) in vivo implicating this as a major role.[26]
Individual components of Crataegus pinnatifida have suppressive effects on the HMG-CoA enzyme, and these compounds (rutin, chlorogenic acid, hyperoside, and quercetin) appear to be synergistic amongst themselves as evidenced by one in vitro study where the actual inhibition of 79.48% was the result of concentrations that mathematically had an additive sum of 50.01% inhibition.[27] This was further tested in vivo, where 2.85mg/kg of a mixture of the four compounds in the ratios found in the fruits (0.16:0.32:1.42:0.95) outperformed any single compound in isolation at the 2.85mg/kg dosage.[11]
Appears to have potent anti-lipidemic effects in rats, although at least one study suggests that this is due mostly to PPARα activation (of which species differences exist) and thus extrapolation to humans may be of lesser magnitude. Human studies will be needed to ascertain potency