D-Aspartate can influence the testicles via the NMDA receptors, present in both Leydig and Sertoli cells of the testes.[34] After being taking up into a cell, D-Aspartate appears to have the ability to induce testosterone release, although it tends to work synergistically with hCG by increasing the efficacy of hCG on a testicular cell.[35] This increase in testoterone synthesis is not seen after 1 hour of incubation (yet is after 16 hours), and can both increase cholesterol transport into the inner mitochondrial membrane by increasing expression of the StAR protein, which is a transporter that brings cholesterol into the mitochondria and is also influenced by Cordyceps.[35] hCG treatment is able to increase expression of StAR itself via a cAMP dependent pathway,[36][37] and incubation of a cell with D-Aspartate can increase hCG-induced StAR mRNA upregulation 3.5-fold and protein content by 1.9-fold and can increase in cAMP levels by 3.1-fold at 0.1mM and 5.25-fold at 5.25mM.[35]
Increasing the activity of the rate-limiting step in steroidogenesis (steroid synthesis) in the testes may underlie the ability of D-aspartic acid to increase testosterone in otherwise healthy men, which has been noted once
Oral intake of 500mg/kg and 1g/kg are associated with increases of 12 and 20% of 3β-HSD, respectively, in rats.[38]
Nitric Oxide (NO) is increased by 30% at 500mg/kg, but fails to be increased at 1g/kg in rats.[38]
D-Aspartic Acid may have the ability to induce oxidative stress in the testes, where 500mg/kg and 1g/kg bodyweight D-Aspartic Acid in rat feed, but not 50mg/kg bodyweight, caused oxidative stress in the testes over the course of 7 days.[38] At this dose, the weight of the testes (and liver) are slightly decreased by 11-13% and oxidative markers increased at the 500mg/kg and 1g/kg dose by 74% and 85% (mitochondria) and 30% and 46% (cytosol), and according increases were seen in lipid peroxides.[38] These pro-oxidative changes were met with an increase in Glutathione, Glutathione Transferase, and Catalase without changes in SOD as well as adverse alterations in mitochondrial function as measured by increase of Ca2+ influx and a decrease in mitochondrial membrane potential.[38]
In vitro, these pro-oxidative effects are concentration-dependent and start to occur at 250uM in the cytosol yet occurred at much lower concentrations in the mitochondria (5-50uM causing a two-fold increase).[38]
Higher doses of 500-1,000mg/gk in rats are associated with preliminary toxicological signs, and this dose correlates to 80-160mg/kg in humans; an oral dose of 7.2-14.4g for a 200lb human
Beyond the testes and testosterone synthesis, D-Aspartate appears to be involved with spermatogenesis (production of sperm) and may have a role in reproduction due to its correlations.[39] One human study using 2.66g D-Aspartate daily for 90 days in men with abnormal seminal profiles (asthenozoospermia and oligoasthenozoospermia) noted improvements in seminal motility and concentration (ranging from 50-100% improvements from baseline) and was associated with higher fertility rates in men.[40] This study also noted a significantly higher D-Aspartate concentration in the semen of men given D-Aspartate (96-100% higher concentrations).[40]