30μg/mL asiaticoside has been noted to induce genes associated with skin cell proliferation and collagen synthesis[35] and to promote skin cell migration, attachment, and growth in vitro[120] while collagen type I and III mRNA has been noted to be increased at 1-10μM concentrations of both asiaticoside and madecassoside (the latter being more potent).[121]
In keloid fibroblasts (keloids refer to excessive skin proliferation and scar formation, and tend to be exacerbated by TGF-β1 since it plays a role in tissue regeneration[122] but is dysregulated in prolonged and impaired wound healing resulting in scar formation[123]), asiaticoside at 100-500μg/mL inhibits keloid proliferation in a concentration and time dependent manner over five days of incubation (without affecting normal fibroblasts, reducing keloids to 35-63% of baseline) associated with increasing Smad7 expression and downregulating TGF-β receptors which suppressed collagen synthesis.[124]
When looking at what happens to skin cells, they appear to experience an increase in collagen synthesis and enhanced growth and proliferation when they are subject to centella asiatica glycosides (asiaticoside and madecassoside); the opposite seems to occur in scar tissue
When looking at the enzymes of elastase and hyaluronidase asiaticoside shows inhibitory potential against their activity with IC50 values of 19.45+/-0.25µg/mL (elastase) and 18.63+/-0.33µg/mL, a potency comparable to ursolic acid[90] and greater than other medicinal plants such as clitoria ternatea[125] and horse chestnut.[91]
Madecassoside showed an increase in TIMP-1 mRNA (which normally sequesters MMP-1[126] which would preserve collagen, this also being seen with asiaticoside[35]) but the ratio of TIMP-1:MMP-1 was unaltered suggesting no change in collagen breakdown.[121] Elsewhere, asiaticoside has been shown to reduce MMP-1 activity in vitro[90] with a potency comparable to oleanolic acid.
Both madecassoside (3-10μM) and asiaticoside (10μM) also stimulated TGF-β1 and TβRII mRNA and Smad3 protein levels while downregulating Smad7; the aglycones were inactive[121] and this stimulation of collagen synthesis and TGF-β1 mRNA is independent of the TGF-β1 receptor.[127]
There appears to be a beneficial trend in enzymes and proteins involved in skin synthesis, with a downregulation of MMP-1, elastase, and hyaluronidase activiy with an increase in transforming growth factor mRNA levels
There appears to be an increase in macrophage (but not leucocyte) concentration as well as some cytokines (MCP-1, VEGF, IL-1β) in the wound exudate of rats topically treated with asiaticoside, and macrophages in vitro were the cause of the increased IL-1β when in the presence of MCP-1 (but not inherently).[45]
There appears to be increased macrophage recruitment to wounds associated with asiaticoside
Elastase and hyaluronidase are both involved in loss of skin elasticity with sun exposure[128] and MMP-1 is involved in wrinkle formation;[129] due to the inhibitory potential of asiatocisde against all three aforementioned proteins, it is investigated as a topical agent against skin aging.[90]
Elsewhere, centella asiatica appears to suppress pro-apoptotic changes in mRNA that occurs following UVB exposure.[130][131]
Centella asiatica may possess anti-aging properties on the skin when topically applied, secondary to reducing the damaging effects of UV radiation. While not tested in a living model yet, it appears more potent than other supplements at this goal