80mg/kg oral Benfotiamine is able to abolish the increase in acellular capillary segments in the retina of diabetic rats over 36 weeks, conferring complete protection against diabetic retinopathy according to this rat study.[22]
Redirection of G3P and F6P via the pentose phosphate shunt and activation of transketolase appears to prevent the decrease in cardiac progenitor cells and may be cardioprotective in states of diabetes.[29]
Various benefits to rats at the above doses
A small study (n=9) in Type 1 Diabetics given 300mg Benfotiamine (twice a day to total 600mg) with Alpha Lipoic Acid (600mg twice a day to total 1200mg) over 28 days was able to enhance transketolase activity (measured in monocytes) 2-3 fold and by 15 days completely normalized serum angiopoietin-2 (a biomarker of methylgloxal adducts in endothelial cells), and effectively normalized (as such that it was not statistically different than non-diabetic control) N-acetylglucosamine modified proteins (indicative of AGE status) and 6-keto-PGF.[30]
In diabetics with high-normal proteinuria (protein losses in the urine, in the range of 15–300 mg/24h urinary albumin excretion) taking 300mg thrice a day (totalling 900mg) for a period of 12 weeks failed to provide a significant reduction in serum or urinary Advanced Glycation End products (AGEs); this study also failed to find significant differences in biomarkers of endothelial stress and adhesion factors yet confirmed an increase in thiamine status and transketolase activity.[31]
A two year long trial in type I diabetics (over 15 years of diabetes, thought to have reduced nerve conductance velocity) given 300mg Benfotiamine daily failed to note changes in albumin excretion (urinary), HbA1c, nerve conductance measures, or various inflammatory measures.[32] This study has been commented upon and subsequently responded to,[33] but was mostly a defense of methodology.