5-Lipoxygenase (5-LOX) is an enzyme that used Arachidonic Acid (omega-6 fatty acid) as a substrate to create pro-inflammatory cytokines such as 5-hydroxyeicosatetraenoic acid (5-HETE) and Leukotriene B4; this 5-LOX/Leukotriene pathway being a pro-inflammatory signalling pathway in the body.[77] 11-keto-β-boswellic acid and 3-O-Acetyl-11-keto-β-boswellic acid are inhibitors of 5-LOX with IC50 values of 2.8uM and 1.5uM respectively,[78][79] and although other Boswellic acids (such as β-boswellic acid) can inhibit the enzyme partially the 11-keto group appears to enhance potency.[79] The inhibitory potential of Boswellic Acids on 5-LOX is nonredox in nature.[80] Due to the inhibitory potential of these two Boswellic acids in particular on 5-LOX, the 11-keto Boswellic acids are thought to be the most important.
However, serum binding of AKBA to albumin is very high (greater than 95%), and 800mg of Boswellia given to participants failed to influence plasma Leukotriene B4 levels (which should be reduced with oral intake of 5-LOX inhibitors);[52] whether this can be overcome with higher doses traditionally used in interventions is not known.
Boswellic Acids do not appear to greatly inhibit 12-LOX nor Cyclooxygenase (COX) enzymes in vitro, nor do they prevent peroxidation of Arachidonic acid induced by iron or ascorbate.[81][82] One study using platelets, however, did note inhibition on COX1 and 12LOX by 3-O-acetyl-11-keto-β-Boswellic Acid (AKBA) with an IC50 of 6uM in platelets and 32uM in a cell-free assay;[83] with another author suggesting that their unpublished data is in accordance.[84]
The most well known mechanism of action of Boswellia appears to he 5-Lipoxygenase inhibition, and the two most potent bioactives in this regard appear to be the 11-keto Boswellic acids. The 5-LOX inhibition is direct and specific, rather than a general inhibition that can be induced by anti-oxidant compounds; however, whether this mechanism is active in vivo is currently under investigation (with one report suggesting it is unlikely)
No significant interactions with the two Cyclooxygenase enzymes (COX1 and COX2), the targets of NSAID drugs, although some inhibition of COX1 may be possible
Other antiinflammatory mechanisms of Boswellic acid include NF-kB inhibition,[85] which has been noted in vivo in mice given the boswellic acid AKBA in 100umol/kg injections[66][86] and appears to be mediated by multiple mechanisms. In response to Tumor-Necrosis Factor alpha (TNF-α), AKBA appears to bind directly to IKKs and prevent activation of IκBα and p65 (which then prevents induction of NF-kB)[87] and may also directly bind to Lipopolysaccharide (LPS; a bacterial toxin that induces NF-kB).[88] β-Boswellic acid was able to sequester LPS with an IC50 of 1.8uM, which underperformed the active control of polymyxin B which wholly sequestered LPS at 100nM.[88][89] This appears to be a main mechanism of anti-inflammation, as the reduction of iNOS induction seen in macrophages is wholly due to binding to LPS (with Boswellic acids that do not bind to LPS, such as AKBA, being ineffective).[88] Both studies noted that NF-kB translocation induced by interferons (IFN-γ) was unaffected by Boswellic acids.[87][88]
Incensole Acetate in Boswellia species may also inhibit NF-kB activation, as Incensole can inhibit IKK activation loop phosphorylation induced by TAK/TAB and has no inhibitory effect in T-Cells.[90]
General inhibitory effects on NF-kB, a locus for inflammation in response to antigens and dietary stressors; Incensole seems to have novel mechanisms of action, and β-Boswellic acid appears to bind directly to LPS
Cathepsin G (CatG) inhibition, with β-Boswellic acid having an IC50 of 0.8umol/L.[49] Cathepsin inhibition is a therapeutic target for antiinflammatory actions in neutrophils (immune cells).[91] AKBA may also be relevant for CatG inhibition as it has an IC50 of 1.2umol/L
Microsomal prostaglandin E2 synthase inhibition has been noted with Boswellic acids,[92] where the IC50 value for β-Boswellic acid is 5umol/L and the 11-keto Boswellic acids ('main' two) appear to be relatively inert following injections into rats.[92] MPE2S inhibition is an antiinflammatory therapeutic target.[93] Additionally, a lupeolic acid (a minor class of compounds in Boswellia Serrata) appears to inhibit Phospholipase A(2) with an IC50 range of 2.3-6.9uM in general and cytoplasmic PLA(2)α at 3.6uM; this inhibits formation of Arachidonic Acid prior to subsequent metabolism by 5-LOX, 12-LOX, or COX-1.[94]
Human Leukocyte Elastase (HLE) is also inhibited by Boswellic acids.[95] HLE is an enzyme released by immune cells (PMNs) and 3-O-Acetyl-11-keto-β-Boswellic acid inhibits HLE with an IC50 of 15μM (7.5ug/mL has also been reported[84]), and in this same study they noted some inhibition with both β-boswellic acid and ursolic acid, but an apparent lack of effect of the structurally related compound 18-β-glycyrrhetinic acid (from Licorice).[95] No other compound in this assay inhibited 5-Lipoxygenase.
Several other direct anti-inflammatory mechanisms exist that are within the physiological ranges observed in pharmacokinetic studies, suggesting that they may be relevant to the actions of Boswellia