Dietary copper tends to be bound a bound form in food products, and the acidic environment of the stomach works to free the copper from these complexes.[43] Copper can be absorbed through stomach tissue[44] although when fed to rats via gastric intubation it has failed to appreciably be absorbed via the stomach wall.[45]
It has been argued[46] that food-bound copper is processed differently than copper in the water supply or via dietary supplements; copper can appear rapidly in the blood as free copper (see distribution section) bypassing oral metabolism when not in foodbound form,[47] while acid-mediated digestion of copper from food products allows it to be processed by the liver.
The acidity of the stomach plays a role in extracting dietary copper sources from foodstuffs so that free copper can be absorbed in the intestines.
Copper is absorbed in the intestines from the same transporter as zinc, known as zinc transporters (ZnTs),[48][49] as well as a common bivalent cation transporter known as DMT1[50] that also mediates absorption of other minerals.[51] Copper also has its own transporter known as the copper transporter 1 (CRT1) which can also mediate zinc and iron transportation.[51] When copper is complexed with amino acids, amino acid transporters may also play a role in copper absorption.[52]
The overall absorption of copper from the diet tends to be approximately 30-40%[53] although it is estimated to range between 12-67% reflecting dietary copper levels (better absorption with low intake, worse absorption with progressively higher intakes of copper[22][54]). Copper absorption also tends to vary from person to person, as differences have been noted among individuals even with the same amount of copper in the diet.[54]
Copper can be absorbed from the intestines using a variety of different transporters, with the three groups of transporters (zinc transports, copper transports, and generalized bivalent cation transporters) also mediating iron and zinc absorption.
High levels of zinc in the intestines can promote the synthesis of a binding protein known as metallothionein[55][56] which also binds to copper; this mechanism leads to high doses of zinc reducing copper absorption.[55][56] Copper also has the potential to induce metallothionein proteins,[57] in a process known as mutual antagonism.[58] Because copper intake is much lower relative to zinc, copper is typically not taken in amounts that would interfere with zinc absorption, however.
The induction (responsive production) of the protein metallothionein is a protective mechanism that attenuates absorption of zinc or copper at high concentrations, reducing the risk of harm from mineral overdoses. High concentrations of either mineral can induce this protein, raising the potential for one mineral to cause deficiencies of the other by preventing absorption. On a practical level, copper-induced zinc deficiencies have not been reported due to the low amount of copper present in the diet relative to zinc. Excessive zinc intake is a well-known cause of copper deficiency, however.
The addition of phytate to the diet has failed to influence copper absoprtion in man[54] although high levels of phytate in the rat show the expected reduction in bodily retention of copper over a prolonged period of time.[59]
When looking at how other dietary components can influence absorption of copper in both rodents and humans,[53] it seems that high protein diets increase copper absorption in both rodents and humans (150g protein compared to 50g[60]) resulting in lower copper requirements with higher protein intakes.[61] Composition of the protein sources may also be relevant, as raw meat products have been noted to induce copper deficiency in rats whereas cooked meats have not been shown to have this effect.[62] The general idea of increased dietary protein promoting greater retention of copper may also be a more general mechanism that applies to other dietary minerals as well.[53]
In regard to dietary factors that can interact with copper absorption, high protein diets tend to promote copper absorption while higher than normal intakes of phytic acid may reduce absorption. These alterations in absorption are similar for most other divalent cations including calcium and magnesium.