Creatine

    Researchedby:

    Fact-checked

    by:

    Last Updated: April 16, 2024

    Creatine is among the most well-studied and effective supplements for improving exercise performance. It does this mainly by increasing energy availability during high-intensity activity. Creatine may also provide cognitive and mental health benefits in some contexts.

    What is creatine?

    Creatine (which comes from the Greek word “kreas”, meaning “meat”) is a molecule that is produced in the body from the amino acids arginine, glycine, and methionine. It's primarily made in the liver and (to a lesser extent) in the kidneys and pancreas.[1][2] Creatine stores high-energy phosphate groups in the form of phosphocreatine. These phosphate groups are donated to ADP to regenerate it to ATP, the primary energy carrier in the body.[3] Creatine’s role in energy production is particularly relevant under conditions of high energy demand, such as intense physical or mental activity.

    Creatine can be found in some animal-based foods and is most prevalent in meat and fish.[4][5] Athletes commonly take it as a powder or in capsules.

    What are creatine’s main benefits?

    The primary benefit of creatine is an improvement in strength and power output during resistance exercise. Creatine is well-researched for this purpose, and its effects are quite notable for a supplement, both in the general population,[6][7][8][9] and specifically in older adults.[10][11][12] When used in conjunction with resistance exercise, creatine may modestly increase lean mass.[7][12][11][13] In trained athletes, creatine has been reported to reduce body fat and improve some measures of anaerobic exercise performance, strength, and power output.[14][15] Creatine has also been tested for effects on anaerobic running capacity in many studies, the results of which are rather mixed but generally suggest a small improvement in performance.[16][17][18][19]

    Although creatine has been researched far less for cognitive performance and mental health than for physical performance, it may have benefits in some contexts. Creatine appears to reduce mental fatigue in some scenarios, particularly highly stressful ones involving sleep deprivation or exercise to exhaustion.[20][21] Creatine may also improve some aspects of memory, particularly for people with below-average creatine levels, such as vegetarians and older adults.[22][23] There is also some preliminary evidence to suggest that creatine may reduce symptoms of depression in individuals with major depressive disorder or bipolar disorder.[24] That said, more research is needed in these areas and on other cognitive measures before creatine can be said to be effective for cognitive performance or mental health.

    What are creatine’s main drawbacks?

    Supplementation with creatine typically results in weight gain, partly due to an increase in total body water.[25] The range of weight gain after a creatine loading phase tends to fall between 0.9 and 1.8 kg (1.98–3.96 lbs).[26][27] This may be of particular concern to individuals competing in weight-sensitive sports.

    Diarrhea can occur when too much creatine is taken at one time,[28] in which case the doses should be spread out throughout the day and taken with meals.

    Supplementation with creatine has been reported to negatively affect aerobic capacity to a small degree.[29] It has been speculated that this potential detrimental effect may be related to increases in total body water and body weight following supplementation with creatine.[30]

    How does creatine work?

    Creatine works mainly through its effects on energy metabolism. Adenosine triphosphate (ATP) is a molecule that carries energy within cells and is the main fuel source for high-intensity exercise. When cells use ATP for energy, this molecule is converted into adenosine diphosphate (ADP) and adenosine monophosphate (AMP). Creatine exists in cells in the form of creatine phosphate (or phosphocreatine), which donates a high-energy phosphate group to ADP, thus turning this molecule back into ATP.

    By increasing the overall pool of cellular phosphocreatine, supplementation with creatine can accelerate the recycling of ADP into ATP, thereby quickly replenishing cellular energy stores. This increased availability of energy can promote improvements in strength and power output.[31] The pro-energetic properties of creatine don’t just affect skeletal muscle, but nearly all body systems, including the central nervous system (which comprises the brain and spinal cord).[32]

    What are other names for Creatine

    Note that Creatine is also known as:
    • creatine monohydrate
    • creatine 2-oxopropanoate
    • a-methylguanidinoacetic acid
    Creatine should not be confused with:

    Dosage information

    There are many different forms of creatine available on the market, but creatine monohydrate is the most extensively researched and tends to be the cheapest form. Another option is micronized creatine monohydrate, which dissolves more easily in water.

    In most studies, supplementation involved an initial loading protocol of around 0.3 grams per kilogram of bodyweight per day (typically divided into four equal doses throughout the day) for 5–7 days followed by a daily maintenance dose of at least 0.03 g/kg of bodyweight. For a 180 lb (82 kg) person, this translates to a loading dose of 25 g/day and a maintenance dose of at least 2.5 g/day. The “alternative” to creatine loading involves simply taking a smaller dose (usually 3–5 g) of creatine every day.

    Frequently asked questions

    What is creatine?

    Creatine (which comes from the Greek word “kreas”, meaning “meat”) is a molecule that is produced in the body from the amino acids arginine, glycine, and methionine. It's primarily made in the liver and (to a lesser extent) in the kidneys and pancreas.[1][2] Creatine stores high-energy phosphate groups in the form of phosphocreatine. These phosphate groups are donated to ADP to regenerate it to ATP, the primary energy carrier in the body.[3] Creatine’s role in energy production is particularly relevant under conditions of high energy demand, such as intense physical or mental activity.

    Creatine can be found in some animal-based foods and is most prevalent in meat and fish.[4][5] Athletes commonly take it as a powder or in capsules.

    Do I need to load creatine?

    Creatine loading involves taking a larger amount of creatine for the first few days of supplementation (usually around 0.3 grams per kilogram of bodyweight per day for 5–7 days) before reducing the daily dose to “maintenance” levels (at least 0.03 g/kg of bodyweight). The “alternative” to creatine loading involves simply taking a smaller dose (usually 3–5 g) of creatine every day.

    Although both loading and non-loading strategies increase muscle creatine stores, creatine loading saturates muscles with creatine within the first week of supplementation, while non-loading takes around 4 weeks.[77]

    So, in short: no, you do not need to load creatine. However, creatine loading will lead to slightly quicker benefits than non-loading, with the downside being a potentially greater risk of experiencing digestive discomfort during the loading phase.

    What is the best form of creatine?

    Several forms of creatine (other than creatine monohydrate) have been investigated, including creatine hydrochloride (creatine HCl), creatine citrate, creatine malate, “buffered” creatine (Kre-Alkalyn), and creatine ethyl ester. However, creatine monohydrate has the most scientific evidence behind it to support its efficacy and safety, and appears to be the cheapest form of creatine to purchase.[93] For these reasons, creatine monohydrate is currently the best form of creatine.

    Does caffeine counteract creatine’s ergogenic effects?

    Supplementation with either creatine or caffeine has consistently been shown to enhance exercise performance in most people, with these improvements thought to occur through separate physiological mechanisms.[57][94] However, some evidence suggests that caffeine may blunt the performance-enhancing effect of creatine.

    For example, one study found that six days of creatine loading increased the amount of torque produced by the quadriceps during a resistance exercise protocol, but adding a single dose of 5 mg of caffeine per kg of bodyweight during the final three days of the six-day creatine-loading protocol resulted in no improvement in exercise performance.[79] Another study found that supplementation with creatine on 4–5 days per week before performing resistance exercise increased quadriceps muscle thickness, but the same dose of creatine plus 3 mg of caffeine per kg of bodyweight resulted in no increases in quadriceps muscle thickness.[89] That said, the study was significantly underpowered, limiting its ability to detect small changes over time.

    One potential explanation for why caffeine may interfere with creatine’s performance-enhancing properties is the opposing effect the two substances have on muscle relaxation time. More specifically, creatine increases calcium reuptake into the sarcoplasmic reticulum (a structure in muscle cells that stores calcium) and reduces muscle relaxation time, whereas caffeine increases calcium release from the sarcoplasmic reticulum and increases muscle relaxation time.[81] Theoretically, reduced muscle relaxation time would be conducive to generating high amounts of force quickly and in rapid succession. Another potential explanation is that co-ingestion of creatine and caffeine may cause gastrointestinal distress.[80][82]

    With the above said, some studies have found that after 5–6 days of creatine loading, supplementation with caffeine before an exercise test enhanced exercise performance.[83][84] Moreover, another study found no differences between supplementation with creatine, creatine plus 300 mg caffeine anhydrous, and creatine plus coffee for changes in strength, muscular endurance, or repeated sprint performance.[82] That said, although caffeine didn’t appear to blunt creatine’s effects in this study, creatine also didn’t appear to have any beneficial effects to begin with. Additionally, studies that have investigated the acute and chronic effects of supplementation with multi-ingredient preworkout supplements containing both caffeine and creatine have reported enhanced exercise performance and muscular adaptations.[85][86][87][88] However, the preworkout supplements also contained ergogenic ingredients other than creatine and caffeine (e.g., beta-alanine), which may have confounded the results.

    Overall, the evidence suggesting that caffeine may blunt creatine’s performance-enhancing effects is weak and observed mainly in studies that implemented a creatine loading protocol or used high (5 mg/kg of bodyweight) doses of caffeine. This implies that this effect — if it exists at all — may not be relevant when creatine loading is not used or when lower doses of caffeine are taken. Until more research is available, it may be best to take caffeine after a creatine loading protocol has been completed, take lower (≤3 mg per kg of bodyweight) doses of caffeine when co-ingested with creatine, or simply take creatine and caffeine separately.

    What are the main dietary sources of creatine?

    Creatine is found in appreciable quantities in skeletal and cardiac (heart) muscles.[4][5] Therefore, meat (including poultry and fish) and meat-based products are the main dietary sources of creatine. Here are some examples of (uncooked) meats and their respective creatine content:

    • Beef, with minimal visible connective tissue: 4.5 g per kg[95]
    • Chicken: 3.4 g/kg[5]
    • Rabbit: 3.4 g/kg[5]
    • Beef heart: 2.5 g/kg[5]
    • Pork heart: 1.5 g/kg[4]

    According to the NHANES III survey, the average daily consumption of creatine from food sources among Americans aged 19-39 years is around 1.1 g for men and 0.6 g for women.[96]

    How much creatine do I need?

    Approximately 14.6 mmol of creatinine (creatine’s urinary metabolite) is lost on a daily basis in the average 70 kg healthy young man who has a creatine storage capacity of around 120 g.[97] This represents a daily creatine loss rate of 1.6%–1.7% (around 2 g),[98][99] and is the amount of creatine that has to be obtained from the diet or in supplemental form on a daily basis in order to maintain sufficient creatine levels. This value is usually around 20% lower in women and 45% lower in older adults due to lower levels of lean mass in these populations,[97][100] and higher in individuals with higher than normal levels of lean mass.[97]

    Do vegetarians get less creatine from their diet?

    In short, yes. This is because vegetarian diets lack the main dietary source of creatine — meat. With this in mind, and considering that around half of the daily need for creatine is obtained from the diet in omnivores,[101] it’s no surprise that the muscle creatine content of individuals eating a vegetarian diet tends to be lower compared to individuals eating an omnivorous diet.[102] Supplementation with creatine appears to close this gap.[103] It’s worth noting that the levels of creatine in the brain are similar between vegetarians and omnivores.[104][105]

    What are the main creatine formulations and variants?

    Creatine monohydrate is the most common form of creatine, and, unless otherwise stated, the default form of creatine used in most studies.[106] It has high intestinal absorption, with bioavailability of approximately 99% at standard doses of 5–10 g.[107][108] That said, there is evidence to suggest that high acute doses (greater than 10g) of creatine monohydrate can saturate intestinal uptake, lowering absorption and increasing fecal secretion.[109]

    This basic form of creatine comes in two variants: creatine anhydrous and micronized creatine monohydrate.

    Creatine anhydrous (anhydrous coming from the Greek “an-” meaning “without”, and “hydor” meaning “water”) is just creatine without the monohydrate. Creatine anhydrous is converted to creatine monohydrate when exposed to water.[110][111] Because it does not contain monohydrate, creatine anhydrous is 100% creatine by weight, whereas creatine monohydrate is 88% creatine and 12% monohydrate by weight.

    Micronized creatine monohydrate is creatine monohydrate that undergoes a mechanical process that reduces the particle size and increases the water solubility of creatine.

    Other creatine formulations include:

    • Creatine hydrochloride (Creatine HCl): This form is characterized by the creatine molecules being bound with hydrochloric acid. Creatine HCl is touted to require a lower dosage. However, this claim has not been scientifically proven and seems unlikely, since the stomach has an abundance of HCl anyway, and creatine will separate from HCl in the stomach. Thus, both creatine HCl and creatine monohydrate form free creatine in the stomach.
    • Liquid creatine: This form has been found to be less effective than creatine monohydrate.[112] The reduced effect is likely due to the passive breakdown of creatine over a period of days into creatinine, which occurs when creatine is suspended in solution.[113] This is not an issue for people preparing a creatine solution at home, since it takes a few days for creatine to start degrading into creatinine.
    • Buffered creatine (Kre-Alkalyn): This form of creatine has a higher pH level than creatine monohydrate. This is accomplished by adding alkaline powder to creatine. Buffered creatine is touted to enhance the effects of creatine monohydrate. However, this claim has not been scientifically proven. In fact, a 2012 study comparing buffered creatine to creatine monohydrate in 36 resistance-trained individuals found no significant differences between the two with regard to the accumulation of creatine in muscle tissue, training adaptations, or adverse effects.[114]
    • Creatine ethyl ester: This is an esterified form of creatine monohydrate that has been found to be less effective than creatine monohydrate for increasing muscle creatine levels and enhancing resistance training adaptations.[115]
    • Magnesium-chelated creatine: In this form of creatine, magnesium ions are attached to the creatine molecules. Limited research suggests that this form of creatine may have the same ergogenic effects as creatine monohydrate.[116]
    • Creatine nitrate: In this form of creatine, a nitrate (NO3) ion is attached to a creatine molecule. Despite creatine nitrate being more soluble in water, it doesn't appear to enhance athletic performance more than creatine monohydrate.[117]
    What happens when you stop taking creatine?

    When you stop taking creatine, your serum levels of creatine will start to drop, returning to baseline levels after around four weeks.[119][77][123] This length of time may vary slightly between individuals.[124] Assuming a daily creatinine elimination rate of 14.6 mmol/day,[97][123] the upper limit for serum creatine to return to baseline levels after stopping supplementation should be around six weeks.

    Does creatine timing relative to exercise matter?

    The timing of supplementation with creatine for improving training adaptations has only been investigated in a small number of trials.

    One 10-week trial looked at the effect of supplementation with creatine together with protein and carbohydrates both before and after resistance training (i.e., in close proximity to the workout) compared to the same supplement taken in the morning and evening (i.e., further away from the workout).[133] The researchers found that taking the supplement in close proximity to the workout increased lean mass, the cross sectional area of type 2 muscle fibers, strength, and intramuscular creatine and glycogen stores more than taking the supplement further away from the workout. This potential benefit of creatine taken in close proximity to the workout, relative to other times, may be related to an upregulation of creatine transport secondary to muscle contraction.[120]

    A handful of trials have also looked at the effect of supplementation with creatine before compared to after the workout.[134][135][136][137][138] In these trials, no differences were observed between groups for changes in body composition or strength.

    In summary, because only one trial examined the effect of taking creatine (together with protein and carbohydrate) in close proximity to, compared to further away from, resistance training sessions, it remains unclear whether there is an optimal time to supplement with creatine. At the very least, it doesn't seem to matter whether creatine is taken before vs. after resistance training sessions.

    What are creatine’s main benefits?

    The primary benefit of creatine is an improvement in strength and power output during resistance exercise. Creatine is well-researched for this purpose, and its effects are quite notable for a supplement, both in the general population,[6][7][8][9] and specifically in older adults.[10][11][12] When used in conjunction with resistance exercise, creatine may modestly increase lean mass.[7][12][11][13] In trained athletes, creatine has been reported to reduce body fat and improve some measures of anaerobic exercise performance, strength, and power output.[14][15] Creatine has also been tested for effects on anaerobic running capacity in many studies, the results of which are rather mixed but generally suggest a small improvement in performance.[16][17][18][19]

    Although creatine has been researched far less for cognitive performance and mental health than for physical performance, it may have benefits in some contexts. Creatine appears to reduce mental fatigue in some scenarios, particularly highly stressful ones involving sleep deprivation or exercise to exhaustion.[20][21] Creatine may also improve some aspects of memory, particularly for people with below-average creatine levels, such as vegetarians and older adults.[22][23] There is also some preliminary evidence to suggest that creatine may reduce symptoms of depression in individuals with major depressive disorder or bipolar disorder.[24] That said, more research is needed in these areas and on other cognitive measures before creatine can be said to be effective for cognitive performance or mental health.

    Does creatine benefit elite athletes?

    Supplementation with creatine has been found to improve physical performance (mainly power output) in athletes competing at the elite level in a host of different sports, including soccer,[47] volleyball,[48] wrestling,[16], and swimming.[49] That said, the beneficial effects of supplemental creatine appear to be less noticeable in elite athletes than in novice athletes.

    Can creatine increase your testosterone levels?
    Quick answer:

    The evidence is mixed, but the preponderance of the evidence suggests that it’s unlikely that creatine will increase your testosterone levels.

    The evidence is mixed, but the preponderance of the evidence suggests that it’s unlikely that creatine will increase your testosterone levels.

    Three randomized controlled trials conducted in healthy young men reported that supplementing with creatine for 1–3 weeks produced small increases in the levels of testosterone or dihydrotestosterone (DHT; a highly active androgen converted from testosterone).[65][66][67] One of the 3 trials looked at the effect of creatine loading (25 grams/day for 1 week) followed by a maintenance phase (5 grams/day for 2 weeks) on testosterone and DHT in 20 young, healthy rugby players. Although no effect on testosterone was found, creatine increased the levels of DHT by 12 nanograms of DHT per deciliter of blood (ng/dL).[65] The other 2 trials found that supplementation with creatine for 1 week in healthy, active young men increased the concentrations of testosterone by 57 ng/dL and 150 ng/dL.[66][67]

    Conversely, 10 other trials (involving a total of 218 participants) looking at the effect of supplemental creatine at daily doses of 3–25 grams on testosterone levels for up to 12 weeks have found no statistically significant effect.[68][69][70][65][71][72][73][74][75][76] The participants in the majority of these trials were healthy, active young men. With regard to the form of creatine used, 9 trials administered creatine monohydrate, whereas 1 trial administered creatine malate. It’s worth noting that no trials have looked at the effect of creatine on testosterone in men with abnormally low testosterone levels.

    image

    Taken together, the available evidence suggests that supplementing with creatine is unlikely to increase testosterone levels, at least in young healthy men whose testosterone levels are within the normal range.

    Does creatine reduce exercise-induced muscle damage?

    Research examining the effect of supplementation with creatine on measures associated with exercise-induced muscle damage has provided somewhat paradoxical results.

    Two 2021 meta-analyses found that creatine appears to blunt increases in the levels of creatine kinase and lactate dehydrogenase (indirect biomarkers of muscle damage), which suggests that creatine may promote recovery from muscle-damaging exercise.[139][140] However, a more recent meta-analysis found that, although acute supplementation with creatine blunted increases in the levels of creatine kinase and lactate dehydrogenase following muscle-damaging exercise, chronic supplementation with creatine resulted in larger increases in the levels of these biomarkers of muscle damage.[141] These findings suggest that creatine may promote the recovery from a single bout of muscle-damaging exercise, but that chronic supplementation may have the opposite effect.

    One possible explanation for the findings above could be that, since creatine increases training performance and capacity over time, people who supplement with creatine may work their muscles harder than they otherwise would, which could eventually result in greater cumulative muscle damage.

    With the above said, it should be kept in mind that supplementation with creatine doesn’t appear to have a consistent effect on other measures associated with exercise-induced muscle damage, including the recovery of exercise performance and muscle function, inflammatory biomarkers, range of motion, and delayed-onset muscle soreness in the hours following a muscle-damaging exercise bout.[139][140][141]

    Can creatine treat muscle disorders?

    Although curative therapies for muscle disorders are lacking, supplementation with creatine may improve the symptoms of some muscle disorders. According to a 2013 Cochrane meta-analysis, supplementation with creatine decreased symptom severity, increased muscle strength, and improved activities of daily living in individuals with muscular dystrophies.[142] However, no effects of creatine were observed in individuals with metabolic myopathies. It’s also worth noting that one trial reported an increase in muscle pain episodes and impairment in activities of daily living with creatine in individuals with glycogen storage disease type V (GSDV, also called McArdle disease).[143]

    Is creatine beneficial in Parkinson’s disease?

    Although a 2017 meta-analysis found that supplementation with creatine increased functional independence (as assessed with the Schwab and England Activities of Daily Living Scale), the size of the effect was very small (and potentially clinically irrelevant). Moreover, no effects of creatine were observed on mental health, motor symptoms, or activities of daily living as assessed with the Unified Parkinson's Disease Rating Scale (UPDRS).[144]

    Does creatine improve bone health?

    The current body of scientific evidence looking at the effects of creatine on bone health is limited and inconclusive. According to a 2018 meta-analysis, supplementation with creatine alongside resistance training in older adults was no more effective than resistance training alone for improving whole body bone mineral density (BMD) or BMD measured at the lumbar spine, hip, or femoral neck.[145] That said, a 2023 randomized controlled trial conducted in 237 postmenopausal women found that supplementation with creatine for 2 years alongside resistance training preserved the compressive and bending strength of parts of the femur.[146]

    Does creatine improve blood sugar control?

    Limited available evidence from one meta-analysis of five randomized controlled trials involving healthy adults and adults with diabetes found no effect of supplementation with creatine on fasting blood glucose levels or on the degree of insulin resistance.[147]

    What are creatine’s main drawbacks?

    Supplementation with creatine typically results in weight gain, partly due to an increase in total body water.[25] The range of weight gain after a creatine loading phase tends to fall between 0.9 and 1.8 kg (1.98–3.96 lbs).[26][27] This may be of particular concern to individuals competing in weight-sensitive sports.

    Diarrhea can occur when too much creatine is taken at one time,[28] in which case the doses should be spread out throughout the day and taken with meals.

    Supplementation with creatine has been reported to negatively affect aerobic capacity to a small degree.[29] It has been speculated that this potential detrimental effect may be related to increases in total body water and body weight following supplementation with creatine.[30]

    Can creatine cause cancer?
    Quick answer:

    The potential links between creatine and cancer are unclear. In general, evidence from in vitro studies and from studies conducted in animals suggests that creatine may have both cancer-suppressive and cancer-promoting properties,[33] whereas evidence from human research suggests a potential protective role of creatine against cancer.

    The potential links between creatine and cancer are unclear. In general, evidence from in vitro studies and from studies conducted in animals suggests that creatine may have both cancer-suppressive and cancer-promoting properties.[33]

    For example, in mouse models, both creatine and cyclocreatine (a synthetic analog of creatine) have been reported to slow down the rate of growth of subcutaneously implanted tumors.[34][35][36][37][38][39] The potential antitumor effects of cyclocreatine may require the presence of creatine kinase, through which cyclocreatine is converted to phosphocyclocreatine, which, in turn, potentially acts as an energy depleter by trapping ATP that has been released from the cell’s mitochondria or transported into the cell from outside, thereby limiting cancer cell proliferation.[36] However, because the expression of creatine kinase can vary widely depending on the type of tumor, the potential antitumor effects of cyclocreatine may also vary accordingly.[40] The potential antitumor properties of supplemental creatine may be related to its effects on cellular acidosis, inflammation, and oxidative stress,[37][39] as well as on the regulation of antitumor killer T cell immunity.[41]

    On the other hand, findings from some studies suggest that creatine may promote invasion and metastasis of certain types of cancer — including colorectal cancer, breast cancer, and pancreatic cancer — through its energy-buffering properties and modulation of cell signaling.[42][43][44]

    It’s important to highlight that the above findings are from in vitro and animal research, so their applicability to humans is currently unclear.

    The limited available research in humans seems to suggest a potential protective role of creatine against cancer. Specifically, according to a 2023 cross-sectional study that was performed using data from 7,344 US adults who participated in the 2017–2020 National Health and Nutrition Examination Survey (NHANES), a higher intake of dietary creatine was associated with a lower risk of cancer or malignancy, with a 1% reduction in cancer risk for every additional milligram of creatine per kilogram of body mass consumed daily.[45] Moreover, in a 2006 randomized controlled trial, supplementation with creatine in people with colorectal cancer who were undergoing chemotherapy had no effect on muscle mass, muscle function, or quality of life, but improved biomarkers of nutritional status in a subsample of participants that were undergoing less aggressive chemotherapy.[46]

    Overall, the available evidence from in vitro and animal studies suggests that creatine may suppress primary tumor growth, but promote invasion and metastasis of some types of tumor, with limited research in humans linking dietary creatine to a lower risk of cancer as well as to some minor protective effects in people undergoing mild chemotherapy for colorectal cancer.

    Is creatine safe for your kidneys?
    Quick answer:

    Short- and long-term supplementation with creatine is likely safe for people with healthy kidneys, and short-term supplementation with creatine is likely safe for people with suboptimal kidney function.

    Creatinine is a byproduct of the breakdown of creatine and phosphocreatine in the body. It is also a commonly used marker of kidney function.

    Because supplementing with creatine can increase the blood levels of creatinine, there have been some concerns about a potential negative effect of creatine on kidney function. However, beyond a harmless increase in creatinine levels, scientific reviews on both the long- and short-term safety of supplemental creatine in people with healthy kidneys have consistently found no adverse effects on kidney function with a wide range of doses.[50][51][52][53][54][55][56][57] That said, although doses of >10 g/day have been found not to impair kidney function, fewer long-term trials have assessed the safety of such high chronic daily intakes.

    Similar findings have been reported in trials looking at the effect of supplemental creatine in people with kidney disease, with trials reporting no detrimental effects on kidney function.[58][59][60] That said, long-term trials assessing the safety of supplemental creatine in people with kidney disease are lacking. Also, it’s worth keeping in mind that, because creatine can increase water retention, it could theoretically adversely affect individuals whose kidney disorder is being treated with diuretics, which cause water loss.

    Overall, the available evidence suggests that short- and long-term supplementation with creatine is likely safe for people with healthy kidneys, and that short-term supplementation with creatine is likely safe for people with suboptimal kidney function. Less is known about the effects of long-term supplementation with creatine in people with suboptimal kidney function.

    Also, it’s worth keeping in mind that, although elevated creatinine levels in response to supplementation with creatine are not indicative of kidney damage, creatine’s ability to raise creatinine levels could potentially mask underlying health issues.

    Does creatine cause hair loss?
    Quick answer:

    Although plausible, it seems unlikely that supplementing with creatine causes hair loss.

    Although plausible, it seems unlikely that supplementing with creatine causes hair loss.

    By binding to androgen receptors in susceptible hair follicles, dihydrotestosterone (DHT; a testosterone metabolite) can cause hair follicles to shrink, ultimately leading to hair loss.[61][62] That said, whether a given hair is more or less likely to fall depends on its location (in male-pattern hair loss, the crown and hairline thin first) and the person’s genetic predisposition to hair loss.[63][64]

    A proposed mechanism behind creatine’s effect on testosterone

    image

    image

    The idea that supplemental creatine could be linked to hair loss largely originates from the findings of a 2009 randomized controlled trial.[65] In this trial, college-aged male rugby players who took creatine monohydrate for 3 weeks experienced a 41% increase in their blood levels of DHT. The baseline DHT concentration was 0.98 nmol/L and the concentration after 3 weeks was 1.26 nmol/L, with both values being well within the normal range.

    To date, this has been the only trial testing creatine’s effects on DHT. However, 12 other trials have tested creatine’s effects on testosterone. Of these, only two trials (lasting 6 and 7 days) have reported increases in testosterone levels,[66] [67] while the remaining 10 trials (which ranged in duration from 6 days to 12 weeks) found no effect.[68][69][70][65][71][72][73][74][75][76] Importantly, 5 of these trials specifically tested creatine’s effects on free testosterone, the form of testosterone that gets converted to DHT, and found no significant increases.[68][71][73][69][75]

    Lastly, and perhaps most importantly, the effect of supplemental creatine on hair loss hasn’t been directly studied, so all we can do is make educated guesses.

    To sum up: (i) Only one trial has reported an increase in DHT levels with supplemental creatine; (ii) although DHT levels increased, they stayed well within the normal range; (iii) no other trials have looked at the effect of supplementing with creatine on DHT levels, but 10 of the 12 trials looking at the effect of supplemental creatine on testosterone, five of which also looked at free testosterone, reported no effect; and (iv) the effect of supplemental creatine on hair loss hasn’t been directly studied.

    With the above in mind, we can conclude that, although plausible, it seems unlikely that supplementing with creatine causes hair loss.

    Is creatine supplementation safe during pregnancy?

    No human studies to date have evaluated the safety of supplementation with creatine in women during pregnancy. However, studies in rodents suggest that supplemental creatine may not only be safe, but may also have positive effects on birth outcomes.

    For example, in one study conducted in mice, maternal supplementation with creatine from the midpoint of pregnancy until birth increased the creatine content of the placenta (+105%) and of some of the fetal tissues, including the brain (+3.6%), heart (+14%), kidney (+22%), and liver (+37%).[127] The increased concentration of creatine in the brain of the fetus before birth may protect the fetus from damage associated with low oxygen availability, such as during a Cesarean section.[128] Protective effects have also been observed in the offspring’s diaphragm (through preserved muscle fiber size),[129] kidneys,[130] and neural tissue (due to less oxidation in the brain and less cellular apoptosis).[131]

    Importantly, maternal supplementation with creatine (again, in mice) does not seem to affect the creatine transporter or the enzymes responsible for creatine synthesis in the newborn, which suggests that the capacity for creatine synthesis in the newborn mouse is not altered.[132]

    How does creatine work?

    Creatine works mainly through its effects on energy metabolism. Adenosine triphosphate (ATP) is a molecule that carries energy within cells and is the main fuel source for high-intensity exercise. When cells use ATP for energy, this molecule is converted into adenosine diphosphate (ADP) and adenosine monophosphate (AMP). Creatine exists in cells in the form of creatine phosphate (or phosphocreatine), which donates a high-energy phosphate group to ADP, thus turning this molecule back into ATP.

    By increasing the overall pool of cellular phosphocreatine, supplementation with creatine can accelerate the recycling of ADP into ATP, thereby quickly replenishing cellular energy stores. This increased availability of energy can promote improvements in strength and power output.[31] The pro-energetic properties of creatine don’t just affect skeletal muscle, but nearly all body systems, including the central nervous system (which comprises the brain and spinal cord).[32]

    Does caffeine counteract creatine?
    Quick answer:

    There is very little evidence that caffeine counteracts the benefits of creatine.

    Supplementation with either creatine or caffeine has consistently been shown to enhance high-intensity exercise performance in most people, and the ingredients are thought to achieve this feat via separate physiological mechanisms. There also doesn’t appear to be any pharmacokinetic interactions when caffeine or creatine are taken together; i.e., neither caffeine nor creatine affects the other’s blood levels.[78] Caffeine does not influence creatine’s ability to increase muscle phosphocreatine storage[79], which makes combined supplementation of creatine and caffeine an attractive prospect for athletes and recreational exercisers alike.

    However, there is some evidence to suggest that chronic caffeine consumption during creatine loading blunts the ergogenic (i.e., performance-enhancing) effect of creatine.[80] One notable study found that six days of creatine loading increased the amount of torque produced by the quadriceps during a resistance exercise protocol but adding a single dose of 5 mg of caffeine per kg of body weight during the final three days of the six-day creatine-loading protocol produced no improvement in exercise performance.[79]

    If caffeine does interfere with creatine’s ergogenic effect, it may be a consequence of these supplements having opposing effects on muscle relaxation time. Creatine increases calcium reuptake into the sarcoplasmic reticulum (a structure in muscle cells that stores calcium) and reduces muscle relaxation time, whereas caffeine increases calcium release from the sarcoplasmic reticulum and increases muscle relaxation time.[81] Theoretically, reduced muscle relaxation time would be conducive to generating high amounts of force quickly and in rapid succession.

    Caffeine may also blunt the ergogenic effect of creatine because co-ingestion of these ingredients has been reported to cause gastrointestinal distress in some people.[80][82]

    While these data are thought-provoking, it’s far from clear whether caffeine and creatine should be consumed separately to maximize their ergogenic effects. For instance, despite caffeine potentially diminishing creatine’s ergogenic effect when ingested during creatine loading, other studies found that after five to six days of creatine loading, supplementation with caffeine before an exercise test enhanced performance.[83][84]

    Additionally, studies that investigated the acute and chronic effects of supplementation with a multi-ingredient preworkout supplement containing both caffeine and creatine reported enhanced exercise performance and muscular adaptations.[85][86][87][88] However, these preworkout supplements also contained ergogenic ingredients other than creatine and caffeine (e.g., beta-alanine), which may have confounded the results.

    Lastly, and most recently, the results from two studies cast further uncertainty on whether one should refrain from co-ingestion of caffeine and creatine. In the first study, a 2016 randomized controlled trial, 54 physically active men supplemented with a daily loading dose of creatine, creatine plus 300 mg caffeine anhydrous (equivalent to about 3 cups of coffee), creatine plus coffee (containing 300 mg of caffeine), or placebo for five days. No differences between groups were found for changes in upper- or lower-body strength, upper- or lower-body muscular endurance, or repeated sprint performance.[82] This dose of caffeine didn’t appear to blunt creatine’s effects in this study, but creatine also didn’t appear to have any positive effects to blunt.

    In the second study, a small controlled trial published in 2022, 28 resistance-trained adults were randomly assigned to supplement with a non-loading dose of creatine monohydrate (0.1 grams per kg of body weight), caffeine (3 mg per kg of body weight), creatine plus caffeine, or placebo for four to five days per week before performing resistance exercise. After six weeks of training, there were no differences between groups for changes in upper- or lower-body strength, upper- or lower-body muscular endurance, or fat-free mass; however, the group that supplemented with creatine alone, and only that group, experienced an increase in quadriceps muscle thickness compared to baseline.[89] In this study, the creatine group did see positive effects (albeit in muscle thickness, not performance) that the caffeine + creatine group did not. However, the study was significantly underpowered, limiting its ability to detect small changes over time. The intermittent (as opposed to daily) supplementation protocol may have also influenced the results.

    The evidence indicating that co-ingestion of caffeine and creatine blunts creatine’s ergogenic effect is weak, and is seen mainly in studies that implemented a creatine loading protocol, implying that this effect — if it exists at all — may not be relevant when creatine loading is not used. Nonetheless, this level of evidence may be sufficient to lead some people to reconsider their current supplementation practices.

    In terms of practical recommendations to mitigate the potentially unfavorable interaction between caffeine and creatine, one option is to supplement caffeine before exercise and creatine after exercise.[90] If co-ingesting caffeine and creatine, it may be prudent to stick to a lower dose of caffeine (≤ 3 mg per kg of body weight), as the studies that reported a negative interaction had participants supplement with 5 mg per kg of body weight. Additionally, early studies on creatine supplementation, which had participants mix creatine with hot coffee or tea, didn’t find that these beverages inhibited creatine’s ergogenic effect;[91][92] typical cups of coffee and tea contain far less than 5 mg/kg of caffeine. Further, coffee and tea are not simply “caffeine water” and contain hundreds of other bioactive compounds, which could have influenced the results.

    Is there such a thing as a creatine non-responder?
    Quick answer:

    Yes, there is, in fact, such a thing as a creatine non-responder!

    In general, oral supplementation of creatine increases muscle creatine content by 15%–20%, which is more than a 20 millimolar (mM) increase. Individuals who get a response of this magnitude are considered creatine responders.[118][77][119][120] Creatine non-responders are individuals whose muscle creatine content increases by less than 10 mM after prolonged supplementation with creatine,[121] while creatine quasi-responders are individuals whose muscle creatine content increases by 10–20 mM.[121]

    Non-response to supplemental creatine is thought to explain instances in which not all participants benefit from supplementing with creatine in trials.[122]

    Does creatine affect growth hormone levels?

    Limited evidence suggests that a single dose of creatine at rest may increase growth hormone secretion in the hours following supplementation, with a high degree of variability between individuals (38%–128%).[125] On the other hand, creatine loading (but not a lower daily dose to maintain elevated creatine levels) may blunt exercise-induced growth hormone secretion.[126]

    Update History

    Research Breakdown

    References

    1. ^S COHEN, P BUCKLEYThe synthesis of creatine by preparations of liver from embryos and adults of various speciesJ Biol Chem.(1951 Dec)
    2. ^T R KoszalkaExtrahepatic creatine synthesis in the rat. Role of the pancreas and kidneyArch Biochem Biophys.(1967 Nov)
    3. ^Kent Sahlin, Roger C HarrisThe creatine kinase reaction: a simple reaction with functional complexityAmino Acids.(2011 May)
    4. ^O DahlEstimating protein quality of meat products from the content of typical amino-acids and creatineJ Sci Food Agric.(1965 Oct)
    5. ^R C Harris, J A Lowe, K Warnes, C E OrmeThe concentration of creatine in meat, offal and commercial dog foodRes Vet Sci.(Jan-Feb 1997)
    6. ^Rania L Dempsey, Michael F Mazzone, Linda N MeurerDoes oral creatine supplementation improve strength? A meta-analysisJ Fam Pract.(2002 Nov)
    7. ^Branch JDEffect of creatine supplementation on body composition and performance: a meta-analysisInt J Sport Nutr Exerc Metab.(2003 Jun)
    8. ^Lanhers C, Pereira B, Naughton G, Trousselard M, Lesage FX, Dutheil FCreatine Supplementation and Upper Limb Strength Performance: A Systematic Review and Meta-Analysis.Sports Med.(2017-Jan)
    9. ^Charlotte Lanhers, Bruno Pereira, Geraldine Naughton, Marion Trousselard, François-Xavier Lesage, Frédéric DutheilCreatine Supplementation and Lower Limb Strength Performance: A Systematic Review and Meta-AnalysesSports Med.(2015 Sep)
    10. ^Dos Santos EEP, de Araújo RC, Candow DG, Forbes SC, Guijo JA, de Almeida Santana CC, Prado WLD, Botero JPEfficacy of Creatine Supplementation Combined with Resistance Training on Muscle Strength and Muscle Mass in Older Females: A Systematic Review and Meta-Analysis.Nutrients.(2021-Oct-24)
    11. ^Forbes SC, Candow DG, Ostojic SM, Roberts MD, Chilibeck PDMeta-Analysis Examining the Importance of Creatine Ingestion Strategies on Lean Tissue Mass and Strength in Older Adults.Nutrients.(2021-Jun-02)
    12. ^Philip D Chilibeck, Mojtaba Kaviani, Darren G Candow, Gordon A ZelloEffect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysisOpen Access J Sports Med.(2017 Nov 2)
    13. ^Delpino FM, Figueiredo LM, Forbes SC, Candow DG, Santos HOInfluence of age, sex, and type of exercise on the efficacy of creatine supplementation on lean body mass: A systematic review and meta-analysis of randomized clinical trials.Nutrition.(2022)
    14. ^Wu Y, Hu X, Chen LEffects of Creatine in Trained Athletes: A Meta-analysis of 21 Randomized Placebo-Controlled Trials.Am J Ther.(2020)
    15. ^Mielgo-Ayuso J, Calleja-Gonzalez J, Marqués-Jiménez D, Caballero-García A, Córdova A, Fernández-Lázaro DEffects of Creatine Supplementation on Athletic Performance in Soccer Players: A Systematic Review and Meta-Analysis.Nutrients.(2019-Mar-31)
    16. ^Koçak S, Karli UEffects of high dose oral creatine supplementation on anaerobic capacity of elite wrestlersJ Sports Med Phys Fitness.(2003 Dec)
    17. ^Eckerson JM, Stout JR, Moore GA, Stone NJ, Iwan KA, Gebauer AN, Ginsberg REffect of creatine phosphate supplementation on anaerobic working capacity and body weight after two and six days of loading in men and womenJ Strength Cond Res.(2005 Nov)
    18. ^Okudan N, Gokbel HThe effects of creatine supplementation on performance during the repeated bouts of supramaximal exerciseJ Sports Med Phys Fitness.(2005 Dec)
    19. ^Kinugasa R, Akima H, Ota A, Ohta A, Sugiura K, Kuno SYShort-term creatine supplementation does not improve muscle activation or sprint performance in humansEur J Appl Physiol.(2004 Mar)
    20. ^Roschel H, Gualano B, Ostojic SM, Rawson ESCreatine Supplementation and Brain Health.Nutrients.(2021-Feb-10)
    21. ^Forbes SC, Cordingley DM, Cornish SM, Gualano B, Roschel H, Ostojic SM, Rawson ES, Roy BD, Prokopidis K, Giannos P, Candow DGEffects of Creatine Supplementation on Brain Function and Health.Nutrients.(2022-Feb-22)
    22. ^Avgerinos KI, Spyrou N, Bougioukas KI, Kapogiannis DEffects of creatine supplementation on cognitive function of healthy individuals: A systematic review of randomized controlled trialsExp Gerontol.(2018 Jul 15)
    23. ^Prokopidis K, Giannos P, Triantafyllidis KK, Kechagias KS, Forbes SC, Candow DGEffects of creatine supplementation on memory in healthy individuals: a systematic review and meta-analysis of randomized controlled trials.Nutr Rev.(2023-Mar-10)
    24. ^Kious BM, Kondo DG, Renshaw PFCreatine for the Treatment of Depression.Biomolecules.(2019-Aug-23)
    25. ^Kutz MR, Gunter MJCreatine monohydrate supplementation on body weight and percent body fatJ Strength Cond Res.(2003 Nov)
    26. ^Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt SMeasurement of muscle mass in humans: validity of the 24-hour urinary creatinine method.Am J Clin Nutr.(1983-Mar)
    27. ^Demant TW, Rhodes ECEffects of creatine supplementation on exercise performance.Sports Med.(1999-Jul)
    28. ^Ostojic SM, Ahmetovic ZGastrointestinal distress after creatine supplementation in athletes: are side effects dose dependent?Res Sports Med.(2008)
    29. ^Damien Gras, Charlotte Lanhers, Reza Bagheri, Ukadike Chris Ugbolue, Emmanuel Coudeyre, Bruno Pereira, Marek Zak, Jean-Baptiste Bouillon-Minois, Frédéric DutheilCreatine supplementation and VO 2 max: a systematic review and meta-analysisCrit Rev Food Sci Nutr.(2021 Dec 3)
    30. ^P D Balsom, S D Harridge, K Söderlund, B Sjödin, B EkblomCreatine supplementation per se does not enhance endurance exercise performanceActa Physiol Scand.(1993 Dec)
    31. ^I Mujika, S PadillaCreatine supplementation as an ergogenic aid for sports performance in highly trained athletes: a critical reviewInt J Sports Med.(1997 Oct)
    32. ^Wallimann T, Tokarska-Schlattner M, Schlattner UThe creatine kinase system and pleiotropic effects of creatineAmino Acids.(2011 May)
    33. ^Zhang L, Bu PThe two sides of creatine in cancer.Trends Cell Biol.(2022-May)
    34. ^Kornacker M, Schlattner U, Wallimann T, Verneris MR, Negrin RS, Kornacker B, Staratschek-Jox A, Diehl V, Wolf JHodgkin disease-derived cell lines expressing ubiquitous mitochondrial creatine kinase show growth inhibition by cyclocreatine treatment independent of apoptosis.Int J Cancer.(2001-Nov)
    35. ^Schimmel L, Khandekar VS, Martin KJ, Riera T, Honan C, Shaw DG, Kaddurah-Daouk RThe synthetic phosphagen cyclocreatine phosphate inhibits the growth of a broad spectrum of solid tumors.Anticancer Res.(1996)
    36. ^Lillie JW, O'Keefe M, Valinski H, Hamlin HA, Varban ML, Kaddurah-Daouk RCyclocreatine (1-carboxymethyl-2-iminoimidazolidine) inhibits growth of a broad spectrum of cancer cells derived from solid tumors.Cancer Res.(1993-Jul-01)
    37. ^Kristensen CA, Askenasy N, Jain RK, Koretsky APCreatine and cyclocreatine treatment of human colon adenocarcinoma xenografts: 31P and 1H magnetic resonance spectroscopic studies.Br J Cancer.(1999-Jan)
    38. ^Miller EE, Evans AE, Cohn MInhibition of rate of tumor growth by creatine and cyclocreatine.Proc Natl Acad Sci U S A.(1993-Apr-15)
    39. ^Campos-Ferraz PL, Gualano B, das Neves W, Andrade IT, Hangai I, Pereira RT, Bezerra RN, Deminice R, Seelaender M, Lancha AHExploratory studies of the potential anti-cancer effects of creatine.Amino Acids.(2016-Aug)
    40. ^Patra S, Ghosh A, Roy SS, Bera S, Das M, Talukdar D, Ray S, Wallimann T, Ray MA short review on creatine-creatine kinase system in relation to cancer and some experimental results on creatine as adjuvant in cancer therapy.Amino Acids.(2012-Jun)
    41. ^Di Biase S, Ma X, Wang X, Yu J, Wang YC, Smith DJ, Zhou Y, Li Z, Kim YJ, Clarke N, To A, Yang LCreatine uptake regulates CD8 T cell antitumor immunity.J Exp Med.(2019-Dec-02)
    42. ^Zhang L, Zhu Z, Yan H, Wang W, Wu Z, Zhang F, Zhang Q, Shi G, Du J, Cai H, Zhang X, Hsu D, Gao P, Piao HL, Chen G, Bu PCreatine promotes cancer metastasis through activation of Smad2/3.Cell Metab.(2021-Jun-01)
    43. ^Papalazarou V, Zhang T, Paul NR, Juin A, Cantini M, Maddocks ODK, Salmeron-Sanchez M, Machesky LMThe creatine-phosphagen system is mechanoresponsive in pancreatic adenocarcinoma and fuels invasion and metastasis.Nat Metab.(2020-Jan)
    44. ^Loo JM, Scherl A, Nguyen A, Man FY, Weinberg E, Zeng Z, Saltz L, Paty PB, Tavazoie SFExtracellular metabolic energetics can promote cancer progression.Cell.(2015-Jan-29)
    45. ^Ostojic SM, Grasaas E, Cvejic JDietary creatine and cancer risk in the U.S. population: NHANES 2017–2020Journal of Functional Foods.(2023 Sep)
    46. ^Norman K, Stübler D, Baier P, Schütz T, Ocran K, Holm E, Lochs H, Pirlich MEffects of creatine supplementation on nutritional status, muscle function and quality of life in patients with colorectal cancer--a double blind randomised controlled trialClin Nutr.(2006 Aug)
    47. ^Yáñez-Silva A, Buzzachera CF, Piçarro IDC, Januario RSB, Ferreira LHB, McAnulty SR, Utter AC, Souza-Junior TPEffect of low dose, short-term creatine supplementation on muscle power output in elite youth soccer playersJ Int Soc Sports Nutr.(2017 Feb 7)
    48. ^Lamontagne-Lacasse M, Nadon R, Goulet EDEffect of Creatine Supplementation on Jumping Performance in Elite Volleyball PlayersInt J Sports Physiol Perform.(2011 Aug 22)
    49. ^Juhász I, Györe I, Csende Z, Rácz L, Tihanyi JCreatine supplementation improves the anaerobic performance of elite junior fin swimmersActa Physiol Hung.(2009 Sep)
    50. ^Poortmans JR, Francaux MAdverse effects of creatine supplementation: fact or fiction?Sports Med.(2000 Sep)
    51. ^Farquhar WB, Zambraski EJEffects of creatine use on the athlete's kidneyCurr Sports Med Rep.(2002 Apr)
    52. ^Pline KA, Smith CLThe effect of creatine intake on renal functionAnn Pharmacother.(2005 Jun)
    53. ^Francaux M, Poortmans JRSide effects of creatine supplementation in athletesInt J Sports Physiol Perform.(2006 Dec)
    54. ^Persky AM, Rawson ESSafety of creatine supplementationSubcell Biochem.(2007)
    55. ^Kim HJ, Kim CK, Carpentier A, Poortmans JRStudies on the safety of creatine supplementationAmino Acids.(2011 May)
    56. ^Gualano B, Roschel H, Lancha AH Jr, Brightbill CE, Rawson ESIn sickness and in health: the widespread application of creatine supplementationAmino Acids.(2012 Aug)
    57. ^Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, Candow DG, Kleiner SM, Almada AL, Lopez HLInternational Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicineJ Int Soc Sports Nutr.(2017 Jun 13)
    58. ^Gualano B, de Salles Painelli V, Roschel H, Lugaresi R, Dorea E, Artioli GG, Lima FR, da Silva ME, Cunha MR, Seguro AC, Shimizu MH, Otaduy MC, Sapienza MT, da Costa Leite C, Bonfá E, Lancha Junior AHCreatine supplementation does not impair kidney function in type 2 diabetic patients: a randomized, double-blind, placebo-controlled, clinical trialEur J Appl Physiol.(2011 May)
    59. ^Taes YE, Delanghe JR, De Bacquer D, Langlois M, Stevens L, Geerolf I, Lameire NH, De Vriese ASCreatine supplementation does not decrease total plasma homocysteine in chronic hemodialysis patientsKidney Int.(2004 Dec)
    60. ^Shelmadine BD, Hudson GM, Buford TW et al.The effects of supplementation of creatine on total homocysteineJ Ren Nurs..(2012 Sep)
    61. ^Hamada K, Randall VAInhibitory autocrine factors produced by the mesenchyme-derived hair follicle dermal papilla may be a key to male pattern baldnessBr J Dermatol.(2006 Apr)
    62. ^Trüeb RMMolecular mechanisms of androgenetic alopeciaExp Gerontol.(2002 Aug-Sep)
    63. ^Nyholt DR, Gillespie NA, Heath AC, Martin NGGenetic basis of male pattern baldnessJ Invest Dermatol.(2003 Dec)
    64. ^Rathnayake D, Sinclair RMale androgenetic alopeciaExpert Opin Pharmacother.(2010 Jun)
    65. ^van der Merwe J, Brooks NE, Myburgh KHThree weeks of creatine monohydrate supplementation affects dihydrotestosterone to testosterone ratio in college-aged rugby playersClin J Sport Med.(2009 Sep)
    66. ^Vatani DS, Faraji H, Soori R, Mogharnasi RThe Effects of Creatine Supplementation on Performance and Hormonal Response in Amateur SwimmersScience and Sports.(2011 Nov)
    67. ^Arazi H, Rahmaninia F, Hosseini K, Asadi AEffects of short term creatine supplementation and resistance exercises on resting hormonal and cardiovascular responsesScience and Sports.(2015 Apr)
    68. ^Cooke MB, Brabham B, Buford TW, Shelmadine BD, McPheeters M, Hudson GM, Stathis C, Greenwood M, Kreider R, Willoughby DSCreatine supplementation post-exercise does not enhance training-induced adaptations in middle to older aged malesEur J Appl Physiol.(2014 Jun)
    69. ^Cook CJ, Crewther BT, Kilduff LP, Drawer S, Gaviglio CMSkill execution and sleep deprivation: effects of acute caffeine or creatine supplementation - a randomized placebo-controlled trialJ Int Soc Sports Nutr.(2011 Feb 16)
    70. ^Crowe MJ, O'Connor DM, Lukins JEThe effects of beta-hydroxy-beta-methylbutyrate (HMB) and HMB/creatine supplementation on indices of health in highly trained athletesInt J Sport Nutr Exerc Metab.(2003 Jun)
    71. ^Hoffman J, Ratamess N, Kang J, Mangine G, Faigenbaum A, Stout JEffect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletesInt J Sport Nutr Exerc Metab.(2006 Aug)
    72. ^Eijnde BO, Hespel PShort-term creatine supplementation does not alter the hormonal response to resistance trainingMed Sci Sports Exerc.(2001 Mar)
    73. ^Volek JS, Ratamess NA, Rubin MR, Gómez AL, French DN, McGuigan MM, Scheett TP, Sharman MJ, Häkkinen K, Kraemer WJThe effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreachingEur J Appl Physiol.(2004 May)
    74. ^Faraji H, Arazi H, Vatani D, Hakimi MThe effects of creatine supplementation on sprint running performance and selected hormonal responsesSAJRSPER.(2010)
    75. ^Rahimi R, Faraji H, Vatani DS, Qaderi MCreatine supplementation alters the hormonal response to resistance exerciseKinesiology.(2010)
    76. ^Volek JS, Boetes M, Bush JA, Putukian M, Sebastianelli W, Wayne J, Kraemer, WJResponse of Testosterone and Cortisol Concentrations to High-Intensity Resistance Exercise Following Creatine SupplementationJSCR.(1997 Ayg)
    77. ^Hultman E, Söderlund K, Timmons JA, Cederblad G, Greenhaff PLMuscle creatine loading in menJ Appl Physiol (1985).(1996 Jul)
    78. ^Vanakoski J, Kosunen V, Meririnne E, Seppälä TCreatine and caffeine in anaerobic and aerobic exercise: effects on physical performance and pharmacokinetic considerations.Int J Clin Pharmacol Ther.(1998-May)
    79. ^Vandenberghe K, Gillis N, Van Leemputte M, Van Hecke P, Vanstapel F, Hespel PCaffeine counteracts the ergogenic action of muscle creatine loading.J Appl Physiol (1985).(1996-Feb)
    80. ^Trexler ET, Smith-Ryan AECreatine and Caffeine: Considerations for Concurrent Supplementation.Int J Sport Nutr Exerc Metab.(2015-Dec)
    81. ^Hespel P, Op't Eijnde B, Van Leemputte MOpposite actions of caffeine and creatine on muscle relaxation time in humans.J Appl Physiol (1985).(2002-Feb)
    82. ^Trexler ET, Smith-Ryan AE, Roelofs EJ, Hirsch KR, Persky AM, Mock MGEffects of Coffee and Caffeine Anhydrous Intake During Creatine LoadingJ Strength Cond Res.(2016 May)
    83. ^Doherty M, Smith PM, Davison RC, Hughes MGCaffeine is ergogenic after supplementation of oral creatine monohydrate.Med Sci Sports Exerc.(2002-Nov)
    84. ^Chia-Lun Lee, Jung-Charng Lin, Ching-Feng ChengEffect of caffeine ingestion after creatine supplementation on intermittent high-intensity sprint performanceEur J Appl Physiol.(2011 Aug)
    85. ^Gonzalez AM, Walsh AL, Ratamess NA, Kang J, Hoffman JREffect of a pre-workout energy supplement on acute multi-joint resistance exercise.J Sports Sci Med.(2011)
    86. ^Kendall KL, Moon JR, Fairman CM, Spradley BD, Tai CY, Falcone PH, Carson LR, Mosman MM, Joy JM, Kim MP, Serrano ER, Esposito ENIngesting a preworkout supplement containing caffeine, creatine, β-alanine, amino acids, and B vitamins for 28 days is both safe and efficacious in recreationally active men.Nutr Res.(2014-May)
    87. ^Ormsbee MJ, Mandler WK, Thomas DD, Ward EG, Kinsey AW, Simonavice E, Panton LB, Kim JSThe effects of six weeks of supplementation with multi-ingredient performance supplements and resistance training on anabolic hormones, body composition, strength, and power in resistance-trained men.J Int Soc Sports Nutr.(2012-Nov-15)
    88. ^Lowery RP, Joy JM, Dudeck JE, Oliveira de Souza E, McCleary SA, Wells S, Wildman R, Wilson JMEffects of 8 weeks of Xpand® 2X pre workout supplementation on skeletal muscle hypertrophy, lean body mass, and strength in resistance trained males.J Int Soc Sports Nutr.(2013-Oct-09)
    89. ^Pakulak A, Candow DG, Totosy de Zepetnek J, Forbes SC, Basta DEffects of Creatine and Caffeine Supplementation During Resistance Training on Body Composition, Strength, Endurance, Rating of Perceived Exertion and Fatigue in Trained Young Adults.J Diet Suppl.(2022)
    90. ^Candow DG, Forbes SC, Roberts MD, Roy BD, Antonio J, Smith-Ryan AE, Rawson ES, Gualano B, Roschel HCreatine O'Clock: Does Timing of Ingestion Really Influence Muscle Mass and Performance?Front Sports Act Living.(2022)
    91. ^Birch R, Noble D, Greenhaff PLThe influence of dietary creatine supplementation on performance during repeated bouts of maximal isokinetic cycling in man.Eur J Appl Physiol Occup Physiol.(1994)
    92. ^Greenhaff PL, Casey A, Short AH, Harris R, Soderlund K, Hultman EInfluence of oral creatine supplementation of muscle torque during repeated bouts of maximal voluntary exercise in man.Clin Sci (Lond).(1993-May)
    93. ^Fazio C, Elder CL, Harris MMEfficacy of Alternative Forms of Creatine Supplementation on Improving Performance and Body Composition in Healthy Subjects: A Systematic Review.J Strength Cond Res.(2022-Sep-01)
    94. ^Nanci S Guest, Trisha A VanDusseldorp, Michael T Nelson, Jozo Grgic, Brad J Schoenfeld, Nathaniel D M Jenkins, Shawn M Arent, Jose Antonio, Jeffrey R Stout, Eric T Trexler, Abbie E Smith-Ryan, Erica R Goldstein, Douglas S Kalman, Bill I CampbellInternational society of sports nutrition position stand: caffeine and exercise performanceJ Int Soc Sports Nutr.(2021 Jan 2)
    95. ^Harris RC, Söderlund K, Hultman EElevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation.Clin Sci (Lond).(1992-Sep)
    96. ^Dietary Reference Intakes
    97. ^Brosnan JT, da Silva RP, Brosnan METhe metabolic burden of creatine synthesisAmino Acids.(2011 May)
    98. ^Kan HE, van der Graaf M, Klomp DW, Vlak MH, Padberg GW, Heerschap AIntake of 13C-4 creatine enables simultaneous assessment of creatine and phosphocreatine pools in human skeletal muscle by 13C MR spectroscopyMagn Reson Med.(2006 Nov)
    99. ^M Wyss, R Kaddurah-DaoukCreatine and creatinine metabolismPhysiol Rev.(2000 Jul)
    100. ^Brosnan JT, Brosnan MECreatine: endogenous metabolite, dietary, and therapeutic supplementAnnu Rev Nutr.(2007)
    101. ^Brosnan ME, Brosnan JTThe role of dietary creatineAmino Acids.(2016 Aug)
    102. ^Delanghe J, De Slypere JP, De Buyzere M, Robbrecht J, Wieme R, Vermeulen ANormal reference values for creatine, creatinine, and carnitine are lower in vegetariansClin Chem.(1989 Aug)
    103. ^Watt KK, Garnham AP, Snow RJSkeletal muscle total creatine content and creatine transporter gene expression in vegetarians prior to and following creatine supplementationInt J Sport Nutr Exerc Metab.(2004 Oct)
    104. ^Yazigi Solis M, de Salles Painelli V, Giannini Artioli G, Roschel H, Concepción Otaduy M, Gualano BBrain creatine depletion in vegetarians? A cross-sectional ¹H-magnetic resonance spectroscopy (¹H-MRS) study.Br J Nutr.(2014-Apr-14)
    105. ^Marina Yazigi Solis, Guilherme Giannini Artioli, Maria Concepción García Otaduy, Claudia da Costa Leite, Walquiria Arruda, Raquel Ramos Veiga, Bruno GualanoEffect of age, diet, and tissue type on PCr response to creatine supplementationJ Appl Physiol (1985).(2017 Aug 1)
    106. ^Dash AK, Mo Y, Pyne ASolid-state properties of creatine monohydrate.J Pharm Sci.(2002-Mar)
    107. ^Jäger R, Purpura M, Shao A, Inoue T, Kreider RBAnalysis of the efficacy, safety, and regulatory status of novel forms of creatine.Amino Acids.(2011-May)
    108. ^Jäger R, Harris RC, Purpura M, Francaux MComparison of new forms of creatine in raising plasma creatine levels.J Int Soc Sports Nutr.(2007-Nov-12)
    109. ^McCall W, Persky AMPharmacokinetics of creatineSubcell Biochem.(2007)
    110. ^Yukoh Sakata, Sumihiro Shiraishi, Makoto OtsukaEffect of pulverization on hydration kinetic behaviors of creatine anhydrate powdersColloids Surf B Biointerfaces.(2004 Dec 25)
    111. ^Sakata Y, Shiraishi S, Otsuka MEffect of pulverization of the bulk powder on the hydration of creatine anhydrate tablets and their pharmaceutical properties.Colloids Surf B Biointerfaces.(2005-Dec-10)
    112. ^Astorino TA, Marrocco AC, Gross SM, Johnson DL, Brazil CM, Icenhower ME, Kneessi RJIs running performance enhanced with creatine serum ingestion?J Strength Cond Res.(2005-Nov)
    113. ^Gill ND, Hall RD, Blazevich AJCreatine serum is not as effective as creatine powder for improving cycle sprint performance in competitive male team-sport athletes.J Strength Cond Res.(2004-May)
    114. ^Jagim AR, Oliver JM, Sanchez A, Galvan E, Fluckey J, Riechman S, Greenwood M, Kelly K, Meininger C, Rasmussen C, Kreider RBA buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate.J Int Soc Sports Nutr.(2012-Sep-13)
    115. ^Spillane M, Schoch R, Cooke M, Harvey T, Greenwood M, Kreider R, Willoughby DSThe effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levelsJ Int Soc Sports Nutr.(2009 Feb 19)
    116. ^Selsby JT, DiSilvestro RA, Devor STMg2+-creatine chelate and a low-dose creatine supplementation regimen improve exercise performanceJ Strength Cond Res.(2004 May)
    117. ^Galvan E, Walker DK, Simbo SY, Dalton R, Levers K, O'Connor A, Goodenough C, Barringer ND, Greenwood M, Rasmussen C, Smith SB, Riechman SE, Fluckey JD, Murano PS, Earnest CP, Kreider RBAcute and chronic safety and efficacy of dose dependent creatine nitrate supplementation and exercise performanceJ Int Soc Sports Nutr.(2016 Mar 31)
    118. ^Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff PLCreatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans.Am J Physiol.(1996-Jul)
    119. ^Febbraio MA, Flanagan TR, Snow RJ, Zhao S, Carey MFEffect of creatine supplementation on intramuscular TCr, metabolism and performance during intermittent, supramaximal exercise in humans.Acta Physiol Scand.(1995-Dec)
    120. ^Robinson TM, Sewell DA, Hultman E, Greenhaff PLRole of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscleJ Appl Physiol (1985).(1999 Aug)
    121. ^Syrotuik DG, Bell GJAcute creatine monohydrate supplementation: a descriptive physiological profile of responders vs. nonrespondersJ Strength Cond Res.(2004 Aug)
    122. ^Hadjicharalambous M, Kilduff LP, Pitsiladis YPBrain serotonin and dopamine modulators, perceptual responses and endurance performance during exercise in the heat following creatine supplementationJ Int Soc Sports Nutr.(2008 Sep 30)
    123. ^Preen D, Dawson B, Goodman C, Beilby J, Ching SCreatine supplementation: a comparison of loading and maintenance protocols on creatine uptake by human skeletal muscle.Int J Sport Nutr Exerc Metab.(2003-Mar)
    124. ^Rawson ES, Persky AM, Price TB, Clarkson PMEffects of repeated creatine supplementation on muscle, plasma, and urine creatine levels.J Strength Cond Res.(2004-Feb)
    125. ^Schedel JM, Tanaka H, Kiyonaga A, Shindo M, Schutz YAcute creatine loading enhances human growth hormone secretionJ Sports Med Phys Fitness.(2000 Dec)
    126. ^Peyrebrune MC, Stokes K, Hall GM, Nevill MEEffect of creatine supplementation on training for competition in elite swimmersMed Sci Sports Exerc.(2005 Dec)
    127. ^Zoe Ireland, Hayley Dickinson, Rod Snow, David W WalkerMaternal creatine: does it reach the fetus and improve survival after an acute hypoxic episode in the spiny mouse (Acomys cahirinus)?Am J Obstet Gynecol.(2008 Apr)
    128. ^Adcock KH, Nedelcu J, Loenneker T, Martin E, Wallimann T, Wagner BPNeuroprotection of creatine supplementation in neonatal rats with transient cerebral hypoxia-ischemia.Dev Neurosci.(2002)
    129. ^Cannata DJ, Ireland Z, Dickinson H, Snow RJ, Russell AP, West JM, Walker DWMaternal creatine supplementation from mid-pregnancy protects the diaphragm of the newborn spiny mouse from intrapartum hypoxia-induced damage.Pediatr Res.(2010-Nov)
    130. ^Ellery SJ, Ireland Z, Kett MM, Snow R, Walker DW, Dickinson HCreatine pretreatment prevents birth asphyxia-induced injury of the newborn spiny mouse kidney.Pediatr Res.(2013-Feb)
    131. ^Ireland Z, Castillo-Melendez M, Dickinson H, Snow R, Walker DWA maternal diet supplemented with creatine from mid-pregnancy protects the newborn spiny mouse brain from birth hypoxia.Neuroscience.(2011-Oct-27)
    132. ^Dickinson H, Ireland ZJ, Larosa DA, O'Connell BA, Ellery S, Snow R, Walker DWMaternal dietary creatine supplementation does not alter the capacity for creatine synthesis in the newborn spiny mouse.Reprod Sci.(2013-Sep)
    133. ^Paul J Cribb, Alan HayesEffects of supplement timing and resistance exercise on skeletal muscle hypertrophyMed Sci Sports Exerc.(2006 Nov)
    134. ^Antonio J, Ciccone VThe effects of pre versus post workout supplementation of creatine monohydrate on body composition and strengthJ Int Soc Sports Nutr.(2013 Aug 6)
    135. ^Candow DG, Zello GA, Ling B, Farthing JP, Chilibeck PD, McLeod K, Harris J, Johnson SComparison of creatine supplementation before versus after supervised resistance training in healthy older adults.Res Sports Med.(2014)
    136. ^Candow DG, Vogt E, Johannsmeyer S, Forbes SC, Farthing JPStrategic creatine supplementation and resistance training in healthy older adults.Appl Physiol Nutr Metab.(2015-Jul)
    137. ^Forbes SC, Krentz JR, Candow DGTiming of creatine supplementation does not influence gains in unilateral muscle hypertrophy or strength from resistance training in young adults: a within-subject design.J Sports Med Phys Fitness.(2021-Sep)
    138. ^Dinan NE, Hagele AM, Jagim AR, Miller MG, Kerksick CMEffects of creatine monohydrate timing on resistance training adaptations and body composition after 8 weeks in male and female collegiate athletes.Front Sports Act Living.(2022)
    139. ^Yue Jiaming, Mohammad Hossein RahimiCreatine supplementation effect on recovery following exercise-induced muscle damage: A systematic review and meta-analysis of randomized controlled trialsJ Food Biochem.(2021 Oct)
    140. ^Bethany Northeast, Tom CliffordThe Effect of Creatine Supplementation on Markers of Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis of Human Intervention TrialsInt J Sport Nutr Exerc Metab.(2021 Feb 24)
    141. ^Kenji Doma, Akhilesh Kumar Ramachandran, Daniel Boullosa, Jonathan ConnorThe Paradoxical Effect of Creatine Monohydrate on Muscle Damage Markers: A Systematic Review and Meta-AnalysisSports Med.(2022 Feb 26)
    142. ^Kley RA, Tarnopolsky MA, Vorgerd MCreatine for treating muscle disorders.Cochrane Database Syst Rev.(2013-Jun-05)
    143. ^Vorgerd M, Zange J, Kley R, Grehl T, Hüsing A, Jäger M, Müller K, Schröder R, Mortier W, Fabian K, Malin JP, Luttmann AEffect of high-dose creatine therapy on symptoms of exercise intolerance in McArdle disease: double-blind, placebo-controlled crossover studyArch Neurol.(2002 Jan)
    144. ^Mo JJ, Liu LY, Peng WB, Rao J, Liu Z, Cui LLThe effectiveness of creatine treatment for Parkinson's disease: an updated meta-analysis of randomized controlled trials.BMC Neurol.(2017-Jun-02)
    145. ^Scott C Forbes, Philip D Chilibeck, Darren G CandowCreatine Supplementation During Resistance Training Does Not Lead to Greater Bone Mineral Density in Older Humans: A Brief Meta-AnalysisFront Nutr.(2018 Apr 24)
    146. ^Chilibeck PD, Candow DG, Gordon JJ, Duff WRD, Mason R, Shaw K, Taylor-Gjevre R, Nair B, Zello GAA 2-Year Randomized Controlled Trial on Creatine Supplementation during Exercise for Postmenopausal Bone Health.Med Sci Sports Exerc.(2023-May-05)
    147. ^Delpino FM, Figueiredo LMDoes creatine supplementation improve glycemic control and insulin resistance in healthy and diabetic patients? A systematic review and meta-analysis.Clin Nutr ESPEN.(2022-Feb)
    148. ^Barisic N, Bernert G, Ipsiroglu O, Stromberger C, Müller T, Gruber S, Prayer D, Moser E, Bittner RE, Stöckler-Ipsiroglu SEffects of oral creatine supplementation in a patient with MELAS phenotype and associated nephropathy.Neuropediatrics.(2002 Jun)
    149. ^Pritchard NR, Kalra PARenal dysfunction accompanying oral creatine supplements.Lancet.(1998 Apr 25)
    150. ^Simon DK, Wu C, Tilley BC, Wills AM, Aminoff MJ, Bainbridge J, Hauser RA, Schneider JS, Sharma S, Singer C, Tanner CM, Truong D, Wong PSCaffeine and Progression of Parkinson Disease: A Deleterious Interaction With Creatine.Clin Neuropharmacol.(2015 Sep-Oct)
    151. ^Dickinson H, Ellery S, Ireland Z, LaRosa D, Snow R, Walker DWCreatine supplementation during pregnancy: summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy.BMC Pregnancy Childbirth.(2014 Apr 27)
    152. ^Deborah L de Guingand, Kirsten R Palmer, Rodney J Snow, Miranda L Davies-Tuck, Stacey J ElleryRisk of Adverse Outcomes in Females Taking Oral Creatine Monohydrate: A Systematic Review and Meta-AnalysisNutrients.(2020 Jun 15)
    153. ^Koshy KM, Griswold E, Schneeberger EEInterstitial nephritis in a patient taking creatine.N Engl J Med.(1999 Mar 11)
    154. ^Rovinder S Sandhu, John J Como, Thomas S Scalea, James M BettsRenal failure and exercise-induced rhabdomyolysis in patients taking performance-enhancing compoundsJ Trauma.(2002 Oct)
    155. ^Sheth NP, Sennett B, Berns JSRhabdomyolysis and acute renal failure following arthroscopic knee surgery in a college football player taking creatine supplements.Clin Nephrol.(2006 Feb)
    156. ^Bjorg Thorsteinsdottir, Joseph P Grande, Vesna D GarovicAcute renal failure in a young weight lifter taking multiple food supplements, including creatine monohydrateJ Ren Nutr.(2006 Oct)
    157. ^Basturk Taner, Ozagari Aysim, Unsal AbdulkadirThe effects of the recommended dose of creatine monohydrate on kidney functionNDT Plus.(2011 Feb)
    158. ^Dental care statistics for 1970-2 under Austrian health insurance.Osterr Dent Z.(1975 Jan)
    159. ^Vahedi K, Domigo V, Amarenco P, Bousser MGIschaemic stroke in a sportsman who consumed MaHuang extract and creatine monohydrate for body building.J Neurol Neurosurg Psychiatry.(2000 Jan)
    160. ^Brandon F Harris, Coty Winn, Thomas B AblemanHemorrhagic Stroke in a Young Healthy Male Following Use of Pre-Workout Supplement Animal Rage XLMil Med.(2017 Sep)
    161. ^Timcheh-Hariri A, Balali-Mood M, Aryan E, Sadeghi M, Riahi-Zanjani BToxic hepatitis in a group of 20 male body-builders taking dietary supplements.Food Chem Toxicol.(2012 Oct)
    162. ^Kerry N Whitt, Stephen C Ward, Kemal Deniz, Lawrence Liu, Joseph A Odin, Lihui QinCholestatic liver injury associated with whey protein and creatine supplementsSemin Liver Dis.(2008 May)
    163. ^Kammer RTLone atrial fibrillation associated with creatine monohydrate supplementation.Pharmacotherapy.(2005 May)